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PACS. 71.38+i – Polarons and electron-phonon interactions.
PACS. 71.50+t – Localized single-particle electronic states (excluding impurities).
PACS. 52.35Mw– Nonlinear waves and nonlinear wave propagation (including parametric

effects, mode coupling, ponderomotive effects, etc.).

Abstract. – We study numerically the time evolution of the coupled system of an electron,
described by a tight-binding model exhibiting metal-insulator transition, interacting with vibra-
tional degrees of freedom. Depending on the initial energy of the electron, Ee(0), its effective
mass, m∗, on how close to the mobility edge it is and the strength of the electron-phonon
coupling, different types of localized and extended states are formed. We find, that, in general,
an increase of Ee(0) decreases the ability of the system to form localized states, a large m∗ does
not always favor localization and polaron formation is facilitated near the mobility edge.

The interactions between electrons and disorder, and between electrons and lattice vibra-
tions, exist in any solid-state material. Disorder modifies the motion of an electron in profound
ways. The extended Bloch states develop phase incoherence and amplitude fluctuations. The
sharp band edges disappear and tails of localized states emerge. In the last two decades,
our understanding of a number of important issues in the field of localization has greatly
advanced [1]. Electron-phonon (el-ph) interactions have also dramatic effects in some cases.
It is well known, for instance, that in the case of an electron in a 1D periodic lattice, a
polaronic state occurs in the presence of el-ph interaction [2]. Much less has been done to
study the combined effects of disorder and el-ph interaction. It has been argued [3] that the
el-ph coupling has a profound effect on the characteristic features of a disordered system. For
example, it strongly enhances localization, inducing polaron formation at the so-called mobility
edge, even when it is vanishingly small [3]. On the other hand, disorder also affects polaron
formation. The impurities play the role of nucleation centers in the polaron formation [4]. It
should be mentioned that Phillpot et al. [5] have studied the effects of isolated impurities in
the framework of Su-Schrieffer-Heeger Hamiltonian [6]; Anderson [7] also considered the case
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of electron-intramolecular phonon coupling in the presence of a site impurity, and Bulka and
Kramer[8] studied the stability of the polaron in 1D disordered systems. Most of the above
theoretical work is based on the adiabatic approximation and on scaling arguments, which are
simple and elegant but might possess some uncontrollable approximations. However, recently
the time evolution of a combined system of an electron described by a tight-binding model
interacting with vibrational degrees of freedom in 1D was studied in periodic and quasi-periodic
systems [9]-[11], without imposing the adiabatic approximation. Starting with the lattice in its
classical ground state and the electron in various initial states, the numerically calculated time
evolutions of the system provided several types of localized and extended solutions qualitatively
different from the traditional polaronic states [9], [10], as well as a remarkable recurrence
phenomenon [11].

In the present letter, we examine systematically the influence of the el-ph interaction on
one-electron extended states just above the so-called mobility edge, where the electronic states
(in the absence of el-ph interactions) change from extended to localized. In particular, we find
that indeed polaron formation is facilitated as one approaches the mobility edge [9], [10], in
agreement with the scaling arguments [3]. In addition, the localization length, `c, decreases
upon increasing the disorder for a given amount of el-ph coupling. This behavior is normal and
expected. However, we have also numerically obtained results that confirm some speculative
ideas based on scaling arguments concerning transport in disordered systems. We find that
if the disorder is large enough to localize the system, `c increases, instead of decreasing,
as the el-ph coupling increases. Similar behavior is obtained for the case of strong el-ph
coupling, as the disorder increases, `c increases! This increase is due to phonon-assisted
hopping and suggests that the mobility of a strongly localized system increases rather than
decrease with temperature [12], [13]. We have also systematically studied the role of a large
effective electronic mass. One might think that “heavy” electrons are easier localized than
“light” electrons, but as we will show here, this is not always the case.

The Hamiltonian describing our model consists of a quasiperiodic tight-binding electronic
part, He, possessing mobility edge eigenstates (thus simulating a 3D disordered system [14]), a
harmonic lattice part, Hl, and a symmetrized deformation potential interaction part, He-l [10].
The corresponding equations of motion for the coupled electron-lattice system are

ih̄
dcn
dt

= [εn + χ(un+1 − un−1)]cn − J(cn+1 + cn−1) , (1)

M
d2un
dt2

= K(un+1 + un−1 − 2un) + χ(|cn+1|2 − |cn−1|2) , (2)

where cn are the probability amplitudes to find the electron at site n (n = 1, . . . , N), un the
lattice displacements, M the atomic mass, K the interatomic force constant, J the electronic
hopping matrix element, and χ the el-ph coupling strength. Notice from eq. (2) that the
lattice part of the Hamiltonian is treated classically. However, not any other approximation
was employed, when eqs. (1) and (2) were numerically solved. The diagonal matrix elements are
εn = ε0 cos(2πσn), where σ is an irrational number taken as the “golden mean” σ = (

√
5+1)/2.

Notice also that for this quasiperiodic or incommensurate choice of εn, the 1D He possesses
a mobility edge when ε0=2. The hope is that the results of this study will be also valid, at
least qualitatively, for 3D disordered systems. Throughout our calculations, we use J , M and
tl ≡

√
M/K as the natural units of energy, mass, and time, respectively. This choice leaves us

with three parameters: i) The dimensionless quantity h̄/Jtl = te/tl. ii) The coupling strength,
χ, in units of

√
JK, which is the square root of λ = χ2/KJ , similar to the one appearing in

superconductivity. iii) The disorder parameter, ε0/J, which varies from 0 (periodic case) to 2
(mobility edge). The unit of length, a0, is

√
J/K in this natural system of units.
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Fig. 1. – Phase diagram in the (χ, ε0)-plane indicating the regions of extended and localized (shaded
region) states for a) te/tl = 0.01224 and b) te/tl = 1.0, with the electron initially at the bottom of the
band (Ee(0) = −2.0). Notice also the “crossover” region.

In the adiabatic and the antiadiabatic limit (i.e. for Md2un/dt2 ≈ 0), the system of
equations (1) and (2) reduces to a discrete nonlinear Schrödinger equation (DNLS) and in the
continuum, one obtains the integrable nonlinear Schrödinger equation (NLS). Several versions
of DNLS and the NLS have been studied intensively and their properties and solutions are
known [15], since they are applicable to many different problems, including el-ph systems
within the adiabatic approximation. It is well known, for example, that among other hierar-
chies of solutions, NLS sustains soliton solutions that are the analogs of the large polarons in
the coupled el-ph system (we recover this ground-state behavior in our model in the adiabatic
and weak-coupling regime [16]). However, in our approach we fully include lattice vibrations,
discreteness, dispersion, el-ph coupling, nonadiabaticity and disorder. So comparison of the
numerical studies of the time evolution of our coupled system with studies of DNLS and NLS
is of fundamental importance.

In our numerical studies, we focus on the low-temperature case (the lattice is initially at
rest and undeformed) and the electron is very close to an eigenstate of the periodic part of
He with Ee(0) = −2, 0, or localized in a few sites close to the middle of the specimen, with
approximately the same energies as the eigenstates above. Periodic boundary conditions are
used and the time integration is performed with a fourth-order Runge-Kutta method with
a step equal to 10−4–10−3tl, such that in our simulations, energy is conserved to a relative
accuracy of at least 10−5. In this letter we concentrate on the time development of the
participation number, P (t) =

[∑
n |cn(t)|4

]−1, which gives a measure of how many sites
participate in the electronic wave function (P = N for a uniform state and P = 1 for a state
localized in a single site) and is proportional to the localization length, `c, for two different
values of the electronic effective mass: i) te/tl = 0.01224¿ 1 (typical for most metals, adiabatic
regime) and ii) te/tl = 1 (narrow-band materials, nonadiabatic regime). For both cases the
size of the system N = 377 and results for two different initial electronic configurations are
presented: i) the electron very close to the uniform state at the bottom of the band with
Ee(0) = −2 and ii) the electron localized in a single site with Ee(0) = 0.

The main conclusions of this work are presented in fig. 1 and 2, where the “phase diagrams”
in the (χ, ε0)-plane, indicating the region of extended and localized states, are shown. In
fig. 1 a) and b), the results of Ee(0) = −2 for the small m∗ (te/tl = 0.01224) and large m∗

(te/tl = 1) are presented, respectively. In fig. 2 a) and b), the results of Ee(0) = 0, for the
light and the heavy electron are presented, respectively. The phase diagrams describe the
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Fig. 2. – Same as in fig. 1, but with the electron initially localized in a single site, i.e. at the center
of the band (Ee(0) = 0).

state reached after a time of the order of 105tl. The boundaries (1) between the extended
and localized regions presented in fig. 1 and 2 are not sharply defined (there is a region
of “intermediate” states across the boundaries, which is significantly broad in fig. 2 a), for
instance; the results in fig. 1 a) and 2 a) are very similar to the ones in ref. [9]). Figures 1
and 2 clearly show that for all the cases we have examined, as disorder (ε0) increases, and the
mobility edge (ε0 = 2) is approached, a localized polaron is easily formed even for extremely
weak electron-phonon interaction. This general result is due to the fact that as one approaches
the mobility edge from the extended side, the wave functions develop strong fluctuations and
can be easily localized even with a very weak el-ph interaction. Another general feature of our
studies is that increasing el-ph coupling always favors localization. However, note the case in
fig. 2 a) for ε0 = 0, Ee(0) = 0 and small m∗. In this case even a very large value of the el-ph
coupling (χ = 4) is not enough to give localized solutions. The confinement happens easily
(even for weak coupling) when the electron is initially in the ground state Ee(0) = −2 (fig. 1 a)).
Figures 1 b) and 2 b) show how the “phase” diagrams change, by increasing the effective mass
of the electron, for the two different initial electronic states. One might naively think that
“heavy” electrons are more localized than “light” electrons. This is correct only for initially
localized electrons (with Ee(0) = 0) as shown in fig. 2 b). There, increasing m∗ facilitates the
creation of a localized solution. Notice that even for the periodic case (ε0 = 0) the introduction
of a large m∗ gives localized polaron for χ ' 2 (fig. 2 b)). For the same electron-lattice coupling
(χ ' 2) the small m∗ (fig. 2 a)) clearly has extended solutions. However, opposite behavior
is observed (fig. 2 b)), when the initial electronic states are extended with Ee(0) = −2. In
this case, increasing m∗ makes the creation of a localized solution more difficult. Of course,
as in the case of small m∗ (fig. 1 a), 2 a)), the increase of the disorder for large m∗ facilitates

(1) A clear sign of a localized state is obtained if i) P reaches a small value (≤ N/5), which stays
the same as the size N increases. ii) The electronic wave function has one or more pronounced peaks
and seems to decay away from them. iii) The change in electronic energy δEe is positive and the
interaction energy Ee-l is larger than the lattice energy El. However, strong indications for extended
or large polaron states are i) a large P (≥ N/3) which increases with N , ii) an electronic wave function
that extends over all sites of the system without a pronounced peak, and iii) a very small value of
|Ee-l| in comparison with El. In the “crossover” or “intermediate” region, P is roughly between N/5
and N/3, the electronic wave function has one or more peaks but it does not seem to decay as one
moves away from the peaks and the values of Ee-l, El, and δEe are all of the same order of magnitude.
Furthermore, this “crossover” (or even some of the extended) region may disappear altogether in an
infinite system and for an infinite time lapse.
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Fig. 3. – Participation number, P , vs. ε0 for different values of χ, Ee(0), and te/tl. The values for
solid and open circles are 0.5, 0, 1 and 1.0, 0, 1, respectively, and for shaded circles 2.0,−2, 0.01224.
The size of the system N = 377.

localization (fig. 1 b) and 2 b)). So, the scaling arguments for polaron formation [3] are valid,
as expected, for the nonadiabatic case too. This behavior can be understood by resorting to
some simple qualitative arguments [16].

In fig. 3, we plot the values of the participation ratio P/N , after a time of 5000 tl, vs. ε0,
for three representative cases, where all the different behaviors of P are exhibited. The solid
circles represent the case of a well-extended state in the absence of disorder with Ee(0) = 0
(initially localized electron), χ = 0.5, and te/tl = 1. This case can be seen in fig. 2 b),
where we keep χ = 0.5 and move along the ε0 axis. Notice that as disorder, ε0, increases,
P/N decreases as expected. The open circles represent the case of an extended state with
Ee(0) = 0, χ = 1.0 and te/tl = 1. Notice that a very interesting behavior for P/N is obtained;
as ε0 increases, P/N initially increases and then by further increase of ε0, P/N monotonically
decreases. This behavior is observed for intermediate times. For longer times, P/N for the
open circles approaches that of the solid circles. Similar behavior has also been seen for
extended states close to the mobility edge, by keeping the disorder constant and increasing
the el-ph coupling [10]. This behavior will result in a nonmonotonic behavior of the resistivity
of the system [12], [13]. Finally, if a state is strongly localized due to el-ph interaction, the
introduction of disorder tends to delocalize it, i.e. the increase of the disorder increases the
localization length, `c, instead of decreasing it, but the state still remains localized [13]. This
is clearly shown in fig. 3, where the shaded circles represent the case of Ee(0) = −2, χ = 2.0,
and te/tl = 0.01224. One clearly sees that as ε0 increases, P/N also increases. We attribute
this increase to phonon-assisted hopping.

In conclusion, we found that: i) the character of electronic wave functions in disordered
systems changes dramatically with the introduction of el-ph interaction, especially close to
the mobility edge, where polaron formation is facilitated. This behavior is correct for both
adiabatic and nonadiabatic electrons. ii) Close to the extended side of the mobility edge,
a new physical phenomenon has been demonstrated: phonon-assisted mobility can occur in
disordered systems, even in the regime of extended states, and not only in the localized regime.
iii) The effects of varying the electronic effective mass, m∗, depend strongly on the initial



464 EUROPHYSICS LETTERS

conditions. When the electron is initially extended at the bottom of the band, increasing m∗

does not favor localization. Initially highly excited extended electronic states become localized
only when the effective mass of the electron is of the order of the atomic mass. In the case of
the electron initially localized in a single site, the final state becomes extended, if m∗ is small,
and remains localized, if m∗ is large, provided χ is strong enough. In general, an increase of
the initial electronic energy decreases the ability of the system to reach a localized state.
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